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Non-Hermitian localization and delocalization

Joshua Feinberg* and A. Zee†
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We study localization and delocalization in a class of non-Hermitian Hamiltonians inspired by the problem
of vortex pinning in superconductors. In various simplified models we are able to obtain analytic descriptions,
in particular, of the nonperturbative emergence of a forked structure~the appearance of ‘‘wings’’! in the
density of states. We calculate how the localization length diverges at the localization-delocalization transition.
We map some versions of this problem onto a random walker problem in two dimensions. For a certain model,
we find an intricate structure in its density of states.@S1063-651X~99!05406-9#

PACS number~s!: 02.50.2r, 05.20.2y, 11.10.2z, 71.20.2b
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I. INTRODUCTION

Non-Hermitian random matrix theory@1# has been ap-
plied recently to a number of interesting physical situatio
An interesting issue among these physical situations is
study of localization-delocalization transitions in no
Hermitian random Hamiltonians. Earlier discussions of
calization in the context of random walks in random en
ronments and related hydrodynamical problems may
found in @2#. More recently, Hatano and Nelson@3# have
mapped the problem of the vortex line pinning in superc
ductors to a problem involving a non-Hermitian rando
Hamiltonian. When a current is passed through a superc
ductor, vortex lines tend to drift in a direction perpendicu
to the current, but this tendency is counteracted by impuri
on which the vortex lines are pinned. It is expected tha
some critical current the vortex lines become unpinned
delocalized. In the simplest model of this problem, the ph
ics is modeled by a quantum particle hopping on a ri
whose rightward~or counterclockwise! hopping amplitude
teh/2 is different from its leftward hopping amplitud
te2h/2. Note that ih may be thought of as an imaginar
gauge field. On each site of the ring is a random potentiawi
which tries to trap the particle. The Hamiltonian

H5H01W ~1!

is thus the sum of the deterministic non-Hermitian hopp
term

H0i j 5
t

2
~ehd i 11,j1e2hd i , j 11!, i , j 51, . . . ,N ~2!

~with the obvious periodic identificationi 1N[ i of site in-
dices! and the Hermitian random potential term

Wi j 5wid i , j . ~3!

The number of sitesN is understood to be tending to infinity
This problem has been studied by a number of authors@4–7#
following Hatano and Nelson. Note that the Hamiltonian n
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only breaks parity as expected but is non-Hermitian, and t
has complex eigenvalues. It is represented by a real n
asymmetric matrix, with the reality implying that ifE is an
eigenvalue, thenE* is also an eigenvalue.

With no impurities (wi50) the Hamiltonian is immedi-
ately solvable by Bloch’s theorem with the eigenvalues

En5t cosS 2pn

N
2 ih D , ~n50,1, . . . ,N21! ~4!

tracing out an ellipse. The corresponding wave functio
c j

(n);exp 2pinj/N are obviously extended. Note that in th
limit of zero non-Hermiticity (h50) the ellipse collapses to
a segment on the real axis as expected. With impuri
present the spectrum can be obtained by numerical wor
was done extensively by Hatano and Nelson and as is sh
in Fig. 1.

Two ‘‘wings’’ have emerged out of the two ends of th
ellipse. Some eigenvalues have become real. Evidently,
‘‘forks’’ where the two wings emerge out of the ellipse re
resent a nonperturbative effect, and cannot be obtained
treating the impurities perturbatively. It is thus something
a challenge to obtain the two wings analytically. In this p
per, we address this and other problems.

As discussed in Sec. IV of@5# this behavior could be
understood qualitatively by a simple example. In ordina

FIG. 1. The spectrum of the Hamiltonian in Eq.~1! for h
50.5, t52, andN5400 sites. Shown here is the spectrum for o
particular realization of site energies taken from a flat distribut
with 22<wi<2. A finite fraction of eigenvalues has clearl
snapped onto the real axis.~The coordinate axes have been su
pressed to make the appearance of the snapped eigenvalues cle!
6433 ©1999 The American Physical Society
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Hermitian quantum mechanics, it is a familiar textbook d
tum that nearby eigenvalues repel. In contrast, two nea
eigenvalues in the complex plane, separated along the im
nary direction, attract each other under a Hermitian pertur
tion. To see this consider the 232 matrix

S i e 0

0 2 i e
D 1S 0 w

w 0
D ,

with eigenvalues6 iAe22w2. Thus, forw,e, the original
eigenvalues6 i e attract each other, but remain on the ima
nary axis. However, as soon asw>e, they snap onto the rea
axis and start repelling each other. Let us start with the
lipse in the absence of impurities. Near each tip of the
lipse, there is a pair of eigenvalues separated slightly al
the imaginary direction and lying on opposite sides of
real axis. They attract each other and thus approach the
axis, but as soon as the two ‘‘friends’’ arrive on the real ax
they immediately repel each other~as well as the eigenvalu
already on the real axis!. Obviously, this process repeats
self with the next pair of eigenvalues, and thus leads to
formation of the wings.

Hatano and Nelson emphasized thatH0 has a specia
property, namely, that by a~non-unitary! gauge transforma
tion, all the non-Hermiticity can be concentrated on one
bitrarily chosen bond, without changing the spectrum. T
leads to an extraordinarily simple argument that the sta
corresponding to complex eigenvalues are extended, tha
delocalized. Let Hc5Ec. Assume thatc is localized
around some sitej. We can always gauge the non
Hermiticity to a link which is located arbitrarily far awa
from the sitej, whereucu is exponentially small. Thus, if we
cut the ring open at that link, the effect on the Schro¨dinger
equation would be exponentially small, and would van
completely in the limitN→`. It follows from this simple
argument that if we replace the periodic boundary condit
in solving Hc5Ec by an open chain boundary conditio
the localized part of the spectrum of Eq.~1! would not be
affected. But forH with an open chain boundary condition
the gauge transformation just mentioned may be used
gauge away the non-hermiticity completely, meaning that
Hamiltonian is in effect Hermitian with real eigenvalues. W
thus conclude that all localized eigenstates of Eq.~1! corre-
spond to real eigenvalues~in the largeN limit !. In other
words, the states corresponding to complex eigenvalues
extended, that is, delocalized.

Remarkably, non-Hermitian localization theory is simp
in this respect than the standard Hermitian localizat
theory of Anderson and others@8#. To understand the local
ization transition, one has to study only the density of eig
values, or equivalently, the one-point Green function, rat
than the two-point Green function.

II. SINGLE IMPURITY CASE

In this section our philosophy is to find the simplest ve
sion of the hopping model described in the Introducti
which we can solve exactly, but yet manages to capture
essential physics involved, including the nonperturbat
emergence of the two ‘‘wings’’ along the real axis. The d
-
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sired simplification is to replace theN random impurities in
Eq. ~3! by a single impurity. With this simplification we do
not need to specify the precise form of the non-HermitianH0
beyond assuming that it is translationally invariant. We th
replace theWi , j in Eq. ~3! by

Wi , j5w d i ,1d j ,1 , ~5!

wherew is drawn from some probability distributionP(w).
Our task is to calculate the averaged Green function

G~z,z* !5 K 1

N
tr

1

z2H02WL ~6!

of the random HamiltonianH5H01W, from which we may
calculate the eigenvalue density ofH.

Away from the location of the spectrum ofH0 in the
complex z plane we expand Eq.~6! in powers of 1/(z
2H0), and thus obtain

G~z!5G0~z!2
1

N F ]

]z S 1

z2H0
D

1,1
G

3 (
k51

`

^wk&F S 1

z2H0
D

1,1
G k21

, ~7!

where

G0~z!5 K 1

N
tr

1

z2H0
L ~8!

is the Green function ofH0. Due to the translational invari
ance ofH0 we have

S 1

z2H0
D

1,1

5G0~z!

and so

G~z!5G0~z!2
1

N

]G0~z!

]z (
k51

`

^wk&@G0~z!#k21

5G0~z!2
1

N

]G0~z!

]z K w

12wG0~z!L . ~9!

Observe that the effect of the single impurity on the Gre
function is of order 1/N, as should be expected.

We stress again that up to this point we did not adhere
any specific translationally invariantH0 nor did we specify
any particular probability distributionP(w) in our derivation
of Eq. ~9!. We also note that our derivation is exact for a
value ofN.

For finite N the singularities ofG0(z) are isolated simple
poles located at the eigenvalues ofH0. The effect of the
single impurity on any of these poles would be to move
around in an amount which depends on the typical scaler of
the distributionP(w). Thus, if z5z0 is one of the poles of
G0(z), we expect that for small values of the scaler, the full
Green’s functionG(z) will also have a pole nearz5z0.
Thus, in the vicinity ofz5z0 ~ignoring all the other poles!
we may approximate
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G0~z!;
1

N

1

z2z0
. ~10!

Substitution of Eq.~10! into Eq. ~9! yields the simple resul

G~z!;
1

N K 1

z2z02w/NL . ~11!

Equation~11! is nothing but the result of first order pertu
bation theory~after all, we ignored the effect of all state
other than the eigenstate associated withz0).

We can now understand the nonperturbative emergenc
wings under very general circumstances. Evidently, bes
the ‘‘trivial’’ poles just mentioned,G(z) also has a pole
wheneverwG0(z)51 with w in the support ofP(w). We
have

G0~z,z* !5E d2x8
r0~x8,y8!

z2~x81 iy8!
, ~12!

where r0(x,y)[(1/N)( i d(x2Re Ei) d(y2Im Ei) is the
density of eigenvaluesEi of H0. All we require for the fol-
lowing discussion is thatr0(x,y)5r0(x,2y). This is true
for all the HamiltoniansH0 considered in this paper. Then o
the ~positive! real axisG0(x) is real, and decreasing outsid
the spectrum ofH0. @Indeed, it is well known that we can
interpret the real and imaginary parts ofG0(z,z* ) as the
electrostatic fieldEW 5(Ex ,Ey)5(Re G0 ,2Im G0) gener-
ated by the charge densityr0.# Thus, if the real quantity 1/w
lies betweenG0(xedge) and zero~where xedge denotes the
intersection of the edge ofr0 with the real axis!, we will
have a pole on the real axis at somex* (w). Averaging over
w we thus obtain a wing on the positive real axis. A simi
discussion can obviously be given for the negative real a
It is also clear that there is no solution ofwG0(z)51 for z
outsider0 and away from the real axis.

The probability distributionP(w) will in general depend
on some set of parameters$r i% and for some given$r i% it is
of course possible that 1/w does not lie betweenG0(xedge)
and zero. Thus, for some critical values$r i

c% there will be a
transition at which the wings, and hence the localized sta
associated with them, disappear.

In the N→` limit the eigenvalues ofH0 become dense
and will either trace out a curve in the complex energy pla
@analogous to the ellipse associated with Eq.~4!#, or fill out a
two-dimensional region~as, for example, in two-dimensiona
hopping problems!. We now focus our attention on at th
hopping HamiltonianH0 in Eq. ~2!. To make things as
simple as possible we let the parameters in Eq.~2! tend to the
~maximally non-Hermitian! limit h→` and t→0 such that

teh→2 ~13!

~and obviouslyte2h→0). In this limit Eq. ~4! changes into

En5exp
2p in

N
~n50,1, . . . ,N21!, ~14!

and the ellipse associated with Eq.~4! expands into the uni
circle. Furthermore, the full Schro¨dinger equation (H0
1W)c5Ec becomes simply
of
es

r
s.

es

e

wc11c25Ec1 , c i5Ec i 21 . ~15!

As a consequence,

K c i

c i 21
L 5^E&, ~16!

from which we extract the localization length of the statec
simply as

L~E!;
1

lnu^E&u
. ~17!

At the points where the wings join onto the circle the loc
ization length diverges as expected.

The Green function associated with Eq.~14!,

G0~z!5
1

N (
n50

N21
1

z2exp~2p in/N!
,

may be approximated in the largeN limit by

G0~z!5 R dw

2p i

1

w~z2w!
5H 0, uzu,1

1/z, uzu.1.

Substituting this expression into Eq.~9! we obtain

G~z!5H 0, uzu,1

1

z
1

1

NzK w

z2wL , uzu.1.
~18!

Note that independently ofP(w) the disk inside the unit
circle remains devoid of eigenvalues. To get hold of the c
rection G(z)2(1/z) in the outer region it is instructive to
carry out some explicit calculations with particular probab
ity distributionsP(w).

As our first concrete example, we take

P~w!5
1

2
@d~w2r !1d~w1r !#, ~19!

with some scaler. We then find from Eq.~18! that

G~z!5
1

z
1

r

2NzS 1

z2r
2

1

z1r D , uzu.1. ~20!

If r .1, thenG(z) has two new poles on the real axis atz
56r , each with a residue 1/2N. The critical value forr to
induce these two new poles isr c51. The existence of this
critical value is a nonperturbative phenomenon@though its
particular numerical value is retrospectively not surprising
all, being set by Eq.~14!#. From Eq.~17! we find that the
localization length of the states associated with these pole
L(r );1/ln r, and they thus become extended asr→r c51.

Consider next the box distribution

P~w!5
1

2V
u~V22w2!, ~21!

for which
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G~z!5S 12
1

ND 1

z
2

1

2NV
ln

z2V

z1V
, uzu.1. ~22!

The eigenvalue densityr(x,y) ~with z5x1 iy) is related to
the Green function by the general relation@5#

r~x,y!5
1

p

]

]z*
G~z,z* !, ~23!

which gives

r~x,y!5
1

2NV
d~y!u~V2uxu!, uzu5uxu.1. ~24!

@Here we also use the fact that in the cut plane~with the cut
running along the negative real axis! (]/]z* )ln z[(1/2)(]x
1 i ]y)ln z52pu(2x)d(y).] As in the previous example, non
perturbative effects generate a critical value forV, namely,
Vc51. ForV.Vc , the density of eigenvalues develops tw
symmetric wings of lengthV2Vc such that the fraction o
eigenvalues residing in these wings is (1/N)@12(1/V)#. The
localization lengthL(E) of states that reside in the wings
finite for uEu.Vc and diverges logarithmically asuEu→Vc .

As our final example for this section we consider t
Lorentzian distribution

P~w!5
g

p

1

w21g2 , ~25!

with its long tails extending to infinity. The fraction of rea
izations in which an impurity potential is stronger than t
unit scale set by Eq.~14! is (2/p) arctang. We find that
outside the unit circle

G~z!5
1

z
2

ig

NzF 1

z1 ig
u~ Im z!2

1

z2 ig
u~2Im z!G , uzu.1

~26!

and thus using Eq.~23! we find that as in the previous ex
ample, the density of eigenvalues develops wings along
real energy axis given by

rwings~x,y!5
1

Np

g

x21g2 u~x221! d~y!. ~27!

Due to the long tails of Eq.~25!, the wings extend to infinity,
and the fraction of states that reside in them
(2/Np) arctang, namely, the fraction of ‘‘strong’’ impurity
realizations divided byN. Note also that there is no critica
value forg, namely, the wings appear for all positive valu
of g.

Note that to obtain the analog of Eq.~9! in the case of two
impurities already involves a nontrivial combinatorial calc
lation involvingGii , Gj j , andGi j , wherei andj denote the
locations of the two impurities.~It is clear though, that the
results of this section as they stand are still applicable to
problem with many impurities, as long as the separation
tween impurities is larger than the localization length.! Re-
markably, however, we show in the next two sections t
taking the maximally non-Hermitian limit~13!, which re-
stricts the particle to ‘‘one-way’’ hopping, we can readi
treat the generic problem of many impurities.
e

e
e-

t

Finally, we stress that our derivation of Eq.~9! was not
limited to one-dimensional hopping. GivenG0(z) for a
translationally invariantH0 in any number of dimensions
G(z) as given by Eq.~9! is still valid outside the support o
the spectrum ofH0. In general, the spectrum ofH0 in higher
dimensions will fill a two-dimensional region in the comple
energy plane. In order to calculateG(z,z* ) in that region,
and in fact, to see how that region is affected by the imp
rity, we might have to resort to the method of Hermitizatio
discussed in@5#.

III. MAXIMAL NON-HERMITICITY AND MANY
IMPURITIES: ‘‘ONE-WAY’’ MODELS

In the preceding section, our exact result~9! was obtained
for any value of the parameterh. We may perhaps hope tha
we can study the many impurities problem in the particula
symmetric case provided by the limit~13!, namely,teh→2,
te2h→0, in which the ellipse of eigenvalues becomes t
circle ~14!. Thus, we will study the case of maximal non
Hermiticity in which H is given by

Hi j 5d i 11,j1wi d i , j , i , j 51, . . . ,N ~28!

~with the obvious periodic identificationi 1N[ i of site in-
dices.! We refer to this class of models in which the partic
only hops one way as ‘‘one-way models.’’

We have found a particularly simple example in which

P~wi !5
1

2
@d~wi2r !1d~wi1r !#. ~29!

We now proceed to calculate the density of eigenvaluesEi in
this ‘‘one-way sign model,’’ using the master formula

r~x,y![K 1

N (
i

d~x2ReEi ! d~y2Im Ei !L
5

1

p

]

]z

]

]z* K 1

N
ln det@~z2H !~z* 2H†!#L ,

~30!

where we definedz5x1 iy †a careful derivation of Eq.~30!
is given, for example, in Sec. II of@5#‡. It is at this point that
the simplification associated with taking the large no
Hermiticity limit may be appreciated: the determinant ofz
2H for H in Eq. ~28! is simply

det~z2H !5S )
k51

N

~z2wi !D 21. ~31!

~For arbitraryt andh the corresponding formula is conside
ably more complicated.! Note that Eq.~31! is completely
symmetric in the$wi%, and thus, for a given set of site ene
gies it is independent of the way the impurities are arran
along the ring. Averaging over the impurities we obtain

^ ln det~z2H !&522N(
n50

N S N

n D ln@~z2r !n~z1r !N2n21#.

~32!
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In the limit N→`, the binomial coefficient appearing in Eq
~32! is sharply peaked as a function ofn aroundn;N/2, and
thus to first approximation

^ ln det~z2H !&; ln@~z2r !N/2~z1r !N/221#. ~33!

~We also get the correct normalization since in this appro
mation 22NN!/ @(N/2)!#2;1.! In order to calculate the den
sity of eigenvalues we may now insert Eq.~33! ~and its
counterpart forH†) into Eq.~30!, but due to the simplicity of
Eq. ~33! we can avoid doing so and simply identify th
branch singularities of the right hand side of Eq.~33!. These
singularities clearly occur at

zn56Ar 21e4p in/N, n50,1, . . . ,N/2 ~34!

which define the support of the density of eigenvalues.
To summarize, we see that the original unit circle sp

trum of the deterministic part of Eq.~28! is distorted by the
randomness~29! into the curve

z25r 21eiu, 0<u,2p ~35!

in the complexz plane. Clearly,r c51 is a critical value ofr.
For r ,1, the curve~35! is connected, whereas forr .1 it
breaks into two disjoint symmetric lobes that are located
the right and to the left of the imaginary axis. The lobe
the right intersects the real axis atEmin5Ar 221 and at
Emax5Ar 211. As r is decreased tor c51 the two lobes
touch at the origin and merge into a single curve wher
becomes smaller thanr c51.

These analytical predictions agree quite well with resu
of numerical simulations we carried out for three values or
in the different regimesr ,1, r 5r c51, and r .1 ~which
we do not show here!. For a system ofO(100) sites we
observed some scatter of the numerical results around
analytical curve ~35!. The width of that scatter can b
roughly estimated for any givenz0 on Eq. ~35! by keeping
~in addition to the leading term! all terms in the sum~32!
with un2(N/2)u<Ne(z0), where e(z0) is determined by
steepest descent. Then the branch singularities on the
hand side of Eq.~32! would have been bounded between t
curves

~z22r 2!S z1r

z2r D
6e

5eiu. ~36!

@In another work@11#, it is shown that the width of the sca
ter vanishes asN→` and that the spectrum of the Hami
tonian in Eq.~28! is actually one dimensional.#

IV. MANY IMPURITIES AND CRITICAL TRANSITIONS

In this section we push the analysis of the preceding s
tion further and replace Eq.~29! by a generic probability
distributionP(wi).

Using the determinant~31! D(z)[@)k51
N (z2wi)#21 we

write the Green function for the ‘‘one-way’’ Hamiltonia
~28! as

G~z,z* !5 K 1

N

]zD~z!

D~z! L 5K 1

N (
k50

`

(
i 51

N
„D~z!11…2k

z2wi
L .
i-

-

o

s

he

ht

c-

Since each term in the preceding equation factorizes, we
nally arrive at the general formula

G~z,z* !5 K 1

z2wL 2
1

N

]

]z (
k51

`
1

k F K S 1

z2wD kL GN

,

~37!

where in each term we average overw against the arbitrary
distribution P(w). A simple check reveals that Eq.~37! is
consistent with Eqs.~29! and ~33!. The averageŝ (z
2w)2k& may be obtained of course by deriving the gener
ing function

g~z!5 K 1

z2wL . ~38!

It is worthwhile to mention here that a derivation of Eq.~37!
by expanding in powers of the ‘‘one-way’’ hopping piec
H05( i u i &^ i 11u in Eq. ~28! has the nice feature that startin
from any sitei on the chain, the terms that contribute to t
trace~even without taking the average! are precisely those in
which the particle hopped an integer number of compl
revolutions around the chain@which is why the averages in
Eq. ~37! are all raised to the powerN#. This observation may
provide a physical explanation of why the determinant~31!
is completely symmetric in the site energieswi : the particle
visits all sites equally as it hops, wherever thewi ’s are.

As a concrete application of Eq.~37! we now concentrate
on the Lorentzian distribution~25! P(w)5(g/p)(w2

1g2)21. We haveg(z,z* )5@z1 ig sgn (Imz)#21 and ob-
viously

K S 1

z2wD kL 5S 1

z1 ig sgn~ Im z! D
k

5@g~z,z* !#k. ~39!

Thus, using Eq.~37! we obtain the exact result

G~z,z* !5
g~z,z* !

12@g~z,z* !#N 5
@z1 ig sgn~ Im z!#N21

@z1 ig sgn~ Im z!#N21
.

~40!

We would like now to calculate the density of eigenvalue
We first investigater(x,y) off the real axis. Using Eq.~23!
@r(x,y)5(1/p)(]/]z* ) G(z,z* )# we find

r~x,y!5
1

p
~z6 ig!N21

]

]z*
1

~z6 ig!N21

5
1

N (
k50

N21

d (2)
„z1 ig sgn~ Im z!2vk…, ~41!

where vk5e2p ik/N, and z6 ig in the first line of Eq.~41!
correspond toz being in the upper or lower half plane, re
spectively. The complex eigenvalues are thus equally spa
along the union of two arcs of a circle of radius one. T
upper arc is that part of a semicircular arc of a unit circ
~centered at the origin! that remains in the upper half plan
after being pushed a distanceg downward along the imagi-
nary axis.~The lower arc is of course the mirror image of th
upper arc.! Each of these arcs is thus of length arccos(2g2

21),p and carriesnarc5(N/2p)arccos(2g221),(N/2)



g
in
ni

e
a
is

as

t

at

f

y.

im
he
or
av

a
nt

ny
n

a

one

-

an

-

d
ro
ive

n-

um
-

ing
tor

c-

le.

y,

ex-

6438 PRE 59JOSHUA FEINBERG AND A. ZEE
eigenvalues. This means that the arcs exist only as lon
g,gc51, which should be contrasted with the situation
Eq. ~27!. There, the single impurity does not perturb the u
circle, which persists for all values ofg.

The rest of the eigenvalues, which do not have spac
live on the arcs, must have snapped onto the real axis
formed ‘‘wings.’’ The eigenvalue density along the real ax
is generated when]/]z* hits the step functionsu(6Im z) in
Eq. ~40! and we find that it is given by

rwing~x,y!5
1

p
d~y! Im

~x2 ig!N21

~x2 ig!N21

52
d~y!

p
mN21

mN sinf1sin~N21!f

m2N22mN cosNf11
,

~42!

where we have definedx2 ig[m eif.
In the largeN limit Eq. ~42! tends to a particularly simple

form. It is clear that this form depends on whetherm,mc
51 or m.mc . For m.1

rwing~x,y!52
1

p

sinf

m
u~m221!d~y!

5
g

p

1

x21g2 u~x21g221!d~y! ~43!

@which again should be contrasted with the one impurity c
~27!#, while for m,1rwing50.

We thus see that forg,gc51, there are two wings tha
bifurcate from the arcs atx56xc56A12g2. Integrating
over Eq. ~43! we find that the fraction of eigenvalues th
reside in the wings is (nwings/N)512(2/p)arccosg51
2(1/p)arccos(2g221), which together with the fraction o
eigenvalues 2(narc/N)5(1/p)arccos(2g221) that reside in
the arcs, sum up exactly to 1. Asg tends togc , xc becomes
smaller, and vanishes atg5gc . At this point the two wings
touch at the origin and the two arcs disappear completel

As already mentioned, there is no criticalgc in the single
impurity case, as perhaps might be expected. The many
purities case is dramatically different: the long tail of t
Lorentz distribution can overwhelm the non-Hermiticity f
g.gc , and the spectrum collapses to the real axis. We h
carried out some numerical studies. Forg away from gc
51, our analytic results fit the numerical data closely, but
g approachesgc , the statistical fluctuation between differe
realizations of$wi% becomes larger and larger~at g50.9, for
example, forN as large as 400!. It would be interesting to
study the character of the transition in more detail.

It is perhaps worthwhile to remark that although in ma
discussions of disordered physics the Gaussian distributio
the simplest to deal with, here it leads to ag(z) not given by
an elementary function.

Having derived a closed formula@Eq. ~37!# for the Green
function of the ‘‘one-way’’ model~28! ~with pure clockwise
hoppingH05( i u i &^ i 11u), we may now perturb it by adding
a termDH5t( i u i 11&^ i u ~with t small! which allows the
particle to hop counter-clockwise. To first order in perturb
tion theory, the correction to the Green function~37! is now
as

t

to
nd

e

-

e

s

is

-

tr F 1

z2w S H0

1

z2wD N11S DH
1

z2wD G ,
which reflects the fact that the particle has completed
revolution around the chain by performingN11 steps coun-
terclockwise and one step clockwise~which can occur any-
where along the chain!. It is thus possible to study the non
Hermitian Hamiltonian ~1! by perturbing both from the
Hermitian limit and the maximally non-Hermitian limit.

In @5# we showed that by a Hermitization method we c
associate with every non-Hermitian HamiltonianH a Hermit-
ian HamiltonianH. In particular, for the hopping Hamilto
niansH discussed in this paper, the HamiltonianH involved
the hopping of a particle with a binary internal state~call it
an ‘‘up’’ or a ‘‘down’’ particle! such that as it hops it flips its
internal state. Solving the Schro¨dinger equation associate
with H amounts to a simultaneous solution of the Sch¨-
dinger equations associated with the two Hermitian posit
Hamiltonians H15(z2H)(z2H)† and H25(z2H)†(z
2H). We see that for our ‘‘one-way’’ modelsH1 and H2
involve only nearest-neighbor hopping, while for the no
Hermitian hopping models such as Eq.~1! or its generaliza-
tions described in Sec.~V!, H1 andH2 involve next-nearest-
neighbor hopping. This observation persists in the continu
of course. In the continuum the ‘‘one-way’’ Hamiltonian be
comes a first order differential operator and thusH1 , H2 are
second order differential operators. The generic hopp
Hamiltonian becomes a second order differential opera
and thusH1 andH2 are fourth order differential operators.

@The one-dimensional spectrum predicted by Eqs.~40!–
~43! is correct. See, however, Sec. III of@12# for an impor-
tant comment.#

V. CONTINUUM ‘‘ONE-WAY’’ MODELS

The discrete ‘‘one-way’’ models of the two previous se
tions were solved exactly in the lagreN limit. We now show
that their continuum counterparts are also exactly solvab

Starting with the continuum non-Hermitian Schro¨dinger
equation

H52~1/m!@]x1h#21W~x! ~44!

~with constanth), we reach the ‘‘one-way’’ limit by letting
both h andm tend to infinity with a finite ratioh/m ~which
we set to 1/2.! In this limit, H in Eq. ~44! turns into the first
order non-Hermitian operator

H52]x1W~x!, ~45!

which is the desired continuum ‘‘one-way’’ model. Clearl
the spectrum of Eq.~44! may be solved explicitly for any
W(x), once the boundary conditions are specified. For
ample, if Eq. ~45! is defined over 0<x<L with periodic
boundary conditions, we have

cn~x!5
1

AL
expS E

0

x

dyW~y!2EnxD , ~46!
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fn
†~x!5

1

AL
expS 2E

0

x

dyW~y!1EnxD ,

wherecn andfn are the eigenvectors on the right and on t
left, respectively. Imposing the boundary conditions we fi
En5(1/L)*0

LdyW(y)12ipn/L (n being an integer.! Since
we know the spectrum$En% explicitly, we can now conside
randomizingW(x) in Eq. ~45! and calculate any desired co
relation function given any distribution of the randomW(x).
For example, ifW(x)5(n52`

` wn exp(2p inx/L) is drawn
from the Gaussian distribution

P@W#5~1/Z!exp@2~L/2g2!(n50
` uwnu2#

we readily find that the averaged density of eigenvalues

r~ReE,Im E![K (
n52`

`

dS Im E2
2pn

L D
3dS ReE2

1

LE0

L

dxW~x! D L
5A L

2pg2e2L(ReE)2/2g2

3F (
n52`

`

dS Im E2
2pn

L D G , ~47!

namely, each of the purely imaginary eigenvalues ofH05
2]x , is smeared along the real axis by the fluctuations of
real potentialW(x). The spectrum is thus one dimension
as in the discrete case.

It is also straightforward to calculate inverse participati
numbers~IPN! @10# of wave functions in this model. On
possible definition of thekth IPN in this context~which goes
over into the usual definition@10# in the Hermitian case! is
given by

P (k)~E!5

(
n50

` K E
0

L

dxufn
†~x!cn~x!ukd (2)~E2En!L

(
n50

`

^d (2)~E2En!&

.

However, due to Eq.~46! we havefn
†(x)cn(x)51/L identi-

cally. Thus,fn
†(x)cn(x) is always extended, independent

of E, renderingP (k)[L12k. An alternative, less trivial defi-
nition of the kth IPN ~which also goes over into the usu
definition in the Hermitian case! involves the moments
ucn(x)u2k. Since

cn~x!5e2~2p inx/L !c0~x!,

and also since ImEn52p in/L is not random, it is enough to
study the momentŝc0

2k(x)& as functions of ReE. Thus, we
define the contribution to thekth IPN at an arbitrary sitex as

P(k)~ReE,x!5
^c0

2k~x!d~ReE2E0!&

^d~Re E2E0!&
. ~48!
e
,

It turns out that ^c0
2k(x)& is independent of ReE05w0.

Thus, the numerator in Eq.~48! factorizes, renderingP(k)(x)
independentof ReE. We therefore conclude that this con
tinuum ‘‘one-way’’ model with periodic Gaussian-rando
potentialW(x) is not very interesting as far as localization
concerned; its IPNs are independent of energy. The ac
value ofP(k) we found is

P(k)~x!5
1

Lk expF S 2gLk

p D 2

f ~x!G , ~49!

with

f ~x!5 (
n>1

sin2~npx/L !

n2
, ~50!

which is a periodic array of parabolic segments. TheP(k)’s
evidently blow up at anyxÞ0 asL→`. In particular, one

can check that*0
LdxP(1)(x) diverges, indicating that none o

thecn’s in this model is square integrable, hence all states
this model are extended.

VI. RANDOM HOPPING MODELS AND THEIR MAPPING
ONTO RANDOM WALKERS

In this section we study a different class of models,
which there is no site energy, but the hopping is random
non-Hermitian. We consider the Schro¨dinger equation

Ec j5sj* c j 111t j 21c j 21 , ~51!

with the hopping amplitudessj and t j generated randomly
according to some prescription.

If the Hamiltonian is Hermitian, thensj5t j . This Hermit-
ian problem was studied some 20 years ago by Eggarter
Riedinger@9#. They mapped the model onto a random wa
problem and were able to show that all the states, excep
the one atE50, are localized, and furthermore, that the l
calization length diverges asu ln Eu asE→0. The existence of
localized states is in accordance with the arguments
Anderson and co-workers@8#. In contrast, the appearance
an extended state at preciselyE50 is not generic and is due
to the invariance of the spectrum underE→2E ~as one can
see by flipping the sign ofc i for i odd!. Thus, the extended
state atE50 is unstable under any perturbation that destro
this symmetry, such as adding random site energy.

Here we extend and generalize the analysis in@9# to the
non-Hermitian case. Our discussion below serves also
review of @9#, since obviously at any stage we can setsj
equal to t j . Dividing Eq. ~51! by c j and defining D j
[t j 21c j 21 /c j we obtain

D j 115
Rj

E2D j
, ~52!

where Rj[sj* t j . This equation is of course equivalent
Schrödinger’s equation~51! and allows us to solve forD j
iteratively and hence for the wave functionc. For a closed
chain the obvious boundary condition isDN115D1.

Performing a gauge transformationc j→l jc j we find that
we can effectively transformsj*→(l j 11 /l j )sj* and t j

→(l j /l j 11)t j . As perhaps expected,Rj is invariant under
this transformation. We see by these considerations that
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FIG. 2. Graphs ofucu2 of two representative wave functions in one particular realization of the ‘‘clock model’’ with 400 lattice sites
wave function in~a! corresponds to the eigenvalue closest to the originE50.0520.06i . It is extended and its participation ratio is 0.82. Th
wave function in~b! corresponds to the eigenvalue farthest from originE51.3311.14i . It is localized and its participation ratio is 0.01.
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open chain and the closed chain are quite different. Fo
open chain, we can always use this gauge freedom to se
the t j equal to 1, say, with no loss of generality~which in the
Hermitian case would mean setting all thesj equal to 1 as
well, hence getting rid of randomness altogether.! On the
other hand, for a closed chain withN sites, we have the
boundary conditioncN115c1 and hence the constrain
lN115l1. The gauge transformation is not in general use

We can of course invent a variety of models. Hatano a
Nelson @3# consideredsj* 5t je

a and t j5t je
2a wheret j is

taken from the flat distributionP(t)5(1/2D)u(D22t2).
We have studied one particularly simple model which
call the ‘‘clock model,’’ defined by settingsj andt j equal to
random phases. In some sense, this model is particularl
tractive, in that it includes no free parameters. Numerica
we found that the eigenvalues in the clock model are dist
uted~in what appears to be a uniform distribution! in a disk
in the complex plane, centered at the origin and with rad
approximately equal top/2. The rotational invariance of th
spectrum results from our freedom to multiply the rando
Hamiltonian by an arbitrary overall phase.

Recall that the spectrum of any non-Hermitian~or Her-
mitian! hopping problem as defined in Eq.~51! is invariant
underE→2E. Furthermore, in the case of the clock mod
the existence of an extended state atE50 ~providedE50 is
in the spectrum, which is always the case when the num
of sites N is odd! survives the non-Hermiticity. This is s
because the Schro¨dinger equation~51! for E50 implies that
uc j 11u5u(t j 21 /sj* )c j 21u5uc j 21u, and so this state is obvi
ously extended. We expect the other states to be local
with an energy dependent localization length that diverge
E→0. These expectations are supported by the nume
studies we have done.~See Fig. 2.!

We would like now to discuss the divergence of the
calization length asE→0. We thus focus on Eq.~51! for
small E, that is,E small compared to a typical value ofD j .

In the Hermitian case, we have the important observa
thatRj5ut j u2 is real and positive. Also,E is real, and thus by
Eq. ~52! we can takeD j to be real~for an open chain, of
course!. We see from Eq.~52! that for E small compared to
the typical scale ofD, the quantityD j changes sign from site
to site, and hence, as pointed out by Eggarter and Riedin
it is convenient to iterate Eq.~52! twice and write
n
all

l.
d

at-
,
-

s

,

er

ed
as
al

-

n

er,

D j 125S Rj 11

Rj
D F 12E/D j

11E~D j2E!/Rj
GD j . ~53!

We can now definezj[ ln Dj and interpretzj as the position
of a random walker in the complex plane andj as time.
Taking the logarithm of Eq.~53! we obtain

zj 125zj1 ln
Rj 11

Rj
1 lnF 12E/D j

11E~D j2E!/Rj
G , ~54!

defining the motion of the walker.
As noted above, for the Hermitian case,Rj is real and

positive and thus the random walker stays on the real line
particular, Eggarter and Riedlinger took^ ln(Rj11 /Rj)&50 and
defineds2[^@ ln(Rj11 /Rj)#

2&. They made the insightful ob
servation that forE;0 the last term in Eq.~54! ~which
would otherwise be too difficult to treat! could be taken into
account effectively as boundary conditions set on the walk
Consider first the2 ln@11E(Dj2E)/Rj# part of that term.
When D j;(Rj /E);~a large positive number! ~we can al-
ways think ofD j as positive!, the walker’s position on the
real line ~namely,xj5 ln Dj) decreases rapidly. We can thu
effectively replace the term under consideration by a refle
ing wall located at ln(R* /E) ~which moves off to infinity as
E→0), whereR* is a typical value ofRj . Consider now the
remaining ln@12E/Dj# part of that term. This part become
important whenD j5O(E), at which point the sequence o
D j switches sign. We can thus think of a trap~or a trap!
located atx; ln E ~which wanders off to2` as E→0).
Eggarter and Riedinger showed that the localization len
can be related to the lifetime of the walker. In a numeric
simulation we start with a walker being born at the wallx
;1`); typically it drifts rapidly towardsx;0, where it
executes a random walk in its middle age, and as soon
drifts into a substantially negativex region, it rapidly ap-
proaches its death atx;2`.

It is perhaps satisfying that in going from the Hermitia
problem to the non-Hermitian problem the random walk
has escaped from the one-dimensional world and wand
off into the complex plane.~Strictly speaking, due to the
properties of the logarithm, the walker now lives on a cyli
der with circumference 2p.! Equation ~54! describing the
two-dimensional walker is considerably more difficult
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treat. One particularly simple case is given by the clo
model in which the$Rj% are pure random phases. Thus, se
ratingzj5xj1 iy j , we see that as long as the term in squ
brackets in Eq.~54! is close to unity, the walker wanders i
the y direction, with itsx coordinate hardly changing.

We can estimate the localization lengthL(E) rather
crudely by noting that in the~supposedly! exponential tail of
the localized wave functionuD j u;exp@61/L(E)# and soxj
;61/L(E). Thus we estimate 1/L(E) to be given by some
averagex coordinate of the walker. In numerical studies, w
observe that indeed, with the walker starting atx50 it drifts
into a random walk around some average^x&, ~but then
eventually wanders off!.

One message of this section is that random~non-
Hermitian! hopping models appear to be considerably m
complicated than random~non-Hermitian! site energy mod-
els. Indeed, let us mention that another interesting mode
have studied, which we call a hopping ‘‘sign model,’’ is
restriction of the clock model, in whichsj and t j are ran-
domly ~and independently! equal to61. This restriction de-
stroys the rotational symmetry of the spectrum of the clo
model, reducing it to a fourfold symmetry, since eigenvalu
must come in quadruplets6E,6E* ~the Hamiltonian in this
case is real and the symmetry of the spectrum underE→
2E remains intact!. We obtained the density of eigenvalu
numerically, and it exhibits a complicated interesting stru
ture as shown in Fig. 3. It is an interesting challenge
calculate this structure analytically.

The hopping ‘‘sign model’’ is the strictest restriction o
the ‘‘clock model.’’ It is thus interesting to investigate ho
the eigenvalue distribution of the ‘‘sign model’’ chang
when we allow the hopping amplitudes to take on more v
ues. For example, we studied numerically aZ4 model in
which sj and t j took on ~independently! values from$61,
6 i % with equal probability. We found that the intricate stru
ture in Fig. 3 was largely washed out towards the unifo

FIG. 3. The spectrum of the hopping ‘‘sign model’’ for a cha
with 400 sites. The amplitudess andt take on values61 with equal
probability.
k
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disk distribution of the ‘‘clock model,’’ with some residua
fine structure.

At this point we mention a class of hopping models
which thes’s and t ’s in Eq. ~51! are taken from the sam
probability distributionP(x) such thatx is always real and
positive. Although the HamiltonianH is non-Hermitian, the
eigenvalues, that is, the solutions of det(E2H)50, are all
real for N large. While surprising at first sight, this fact ca
be easily understood. The crucial observation is thatRj

5sj t j are all real and positive. ForN large, it does not make
any difference whether the chain is closed or open as fa
the eigenvalues are concerned, and so we can apply
transformation sj→sj85(l j 11 /l j )sj and t j→t j8
5(l j /l j 11)t j mentioned earlier to makesj85t j85ARj

~which is achieved by choosingl j 11 /l j5At j /sj ). Thus the
model is effectively Hermitian, that is, the eigenvalu
~which are gauge invariant, of course! are real. Note that the
‘‘gauge’’ transformation just mentioned does not prese
the localization property of the wave functionc j . For in-
stance, in numerical work, it is convenient to study the p
ticipation ratio, defined byP(E)51/(N( j uc j u4), such that
P→0 for a localized state andP→1 for an extended state
@In general, in addition to the eigenvector on the right cor
sponding to an eigenvalueE,Hc5Ec, there is also the ei-
genvector on the left,H†f5E* f. With the normalization
condition( jf j* c j51, we can naturally consider the varia
definition of the participation ratio given byP(E)
51/(N( j uf j* c j u2)#. Clearly, P is not preserved by the
‘‘gauge’’ transformation in general, and therefore, say, a
calized state may be gauged into an extended state~or vice
versa!, unless thel j are appropriately bounded as a functio
of the site indexj. We thus have to do a case by case stu
of how thel j ’s behave as a function ofj to infer the local-
ization properties of the original wave functions from th
gauge transformed wave functions of the effectively Herm
ian problem, which are of course all localized, as predic
by Anderson and others.

Note that the ‘‘sign model’’ mentioned in the precedin
paragraph and the hopping HamiltonianH0 in Eq. ~2! both
evade the defining conditions of this class of crypto-r
models. An interesting question in mathematical physics i
calculate the fraction of eigenvalues escaping into the co
plex plane when the support ofP(x) includes negative val-
ues ofx.

Finally, in connection with the question raised in the pr
ceding paragraph, we mention here a class of hopping m
els in which thes’s and t ’s in Eq. ~51! are of the formsj
5t1Tj and t j5t2Tj , where the independent random am
plitudes$Tj% take values in the range2T<Tj<T according
to some, say, even probability distribution~this model is a
one dimensional discrete analog of the two-dimensio
‘‘model I’’ in the paper by Miller and Wang in@2#!. For t2

.T2 all Rj are clearly positive with probability one, and thu
the model is ‘‘crypto-real.’’ In general, the eigenvectors
the Hermitian gauge transformed Hamiltonian would all
localized. Eigenvalues would start migrating into the comp
plane only whent2,T2.

An amusing exception to the assertion that all states of
Hermitian gauge transformed Hamiltonian are localized
t2.T2 is provided by the case in which the$Tj% take on
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values6T with equal probabilities. In this caseRj[R5t2

2T2 is actually deterministic and site independent and
scribes free hopping. Obviously, all states of the Hermit
Hamiltonian are extended, regardless of the magnitude
disorderT. Clearly, AR, and thus all eigenvalues are re
when t2.T2, and become pure imaginary fort2,T2. Thus,
for this particular sign distribution, the answer to the qu
tion raised above is that fort2,T2 all eigenvalues escap
into the complex plane~and onto the imaginary axis!.

VII. CONCLUSION

We have studied localization and delocalization in a w
class of non-Hermitian Hamiltonians. In various simplifyin
limits we were able to obtain analytic expressions. Our fi
model~9!, while it involved only a single impurity, was abl
to capture the nonperturbative essence of the localizat
delocalization transition. It was widely applicable to a g
neric H0, in any spatial dimensions. For more explicit e
pressions, we had to invoke the maximally non-Hermitian
‘‘one-way’’ limit, in which the spectrum ofH0 was a circle.
~It is difficult to imagine that comparably simple expressio
can be obtained when the spectrum ofH0 is an ellipse.! We
were then able to analyze the problem of infinitely ma
impurities, one at each site. Results were given for sev
representative probability distributionsP(w) for the impu-
rity potential energyw. We analyzed the phase transitions
parameters inP(w) were varied.

We studied non-Hermitian random hopping Hamiltonia
It has been known that the Hermitian one-dimensional r
dom hopping problem can be mapped into a random w
problem on the real line. We found that in going from t
Hermitian to the non-Hermitian problem, the random walk
steps off the real axis and goes wandering off into the co
plex plane. We showed by numerical work that for the ra
dom phase or ‘‘clock model’’ the density of states appea
to be uniformly distributed over a disk, while in contrast f
the ‘‘random sign’’ model the density of states showed
fascinatingly intricate structure.

The study of non-Hermitian Hamiltonians opens up a r
area for exploration. We can immediately think of ma
questions to be answered. For instance, consider the m
body problem~see also@3#!. In the ‘‘one-way’’ model of Eq.
~28! the many~noninteracting! fermion ground state will be
described by a Slater determinantC;deti , j@c i(xj )# which
in the largeN limit assumes the form) i . j@eiu i2eiu j #. The
question arises, even before we consider impurities, of w
is meant by the lowest energy state ofH0. In other words, as
we fill the system with noninteracting fermions, how do w
order the energy levels if they are arranged in a circle? Th
questions may perhaps be answered by coupling the sy
to some agent~such as a radiation field or a heat bath! which
can exchange energy with the many body system.

As another set of questions, we can ask how a n
Hermitian many body system can be second quantiz
What are some of the properties of a non-Hermitian quan
field theory, such as a gauge theory in which the gauge
tential Am is non-Hermitian? In a relativistic theory, if th
Hamiltonian becomes non-Hermitian, does Poincare´ invari-
ance imply that its other nine generators should become n
Hermitian as well?
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APPENDIX: NON-HERMITIAN PERTURBATION
THEORY

It is of course a trivial exercise to treat the model in E
~1! perturbatively in the strength of the random impurit
Denote the eigenvalues ofH0 andH by $Em% and$Em(w)%,
respectively. WriteH05S21ES with E the diagonal matrix
with elements$Em% ~and thus the columns ofS21 and the
rows of S are the right and left eigenvectors ofH0, respec-
tively!. Define

Em~w!5Em1(
i

wiEm i1(
i , j

wiwjEm i j 1••• . ~A1!

Then by simple arithmetic we obtain

Em i5Sim
21Sm i , Em i j 5 (

nÞm

Sim
21Sm jSj n

21Sn i

Em2En
, ~A2!

and so on. It follows that the averaged density of eigenval
of H is given toO(w2) by

r~x,y!5r0~x,y!1
w2

N (
m

S Fd8~x2ReEm!

3d8~y2Im Em!(
i

ReEm i Im Em i G
2

1

2 H 2d8~x2ReEm!d~y2Im Em!

3(
i

ReEm i i 2d9~x2ReEm!d~y2Im Em!

3(
i

~ReEm i !
21@x↔y,Re↔Im#J D , ~A3!

where we have used onlŷwiwj&5w2d i j . The result~A3!
holds for allH0 ~and for finiteN). For the specificH0 in Eq.
~2! and in the largeN limit there are drastic simplifications
We have Em i51/N and so ImEm i

50 and ( i(ReEm i)
2

51/N. Thus the only nontrivial quantity that comes in is

(
i

Em i i 5
1

Nt (
nÞm

1

cosh@h1 ik~m!#2cosh@h1 ik~n!#
,

~A4!

where k(m)52pm/N, m50,1, . . . ,N21. The expression
~A3! simplifies to



d
d

in

e.
ba-
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r~x,y!5
1

N (
m

dS x2ReEm2w2(
i

ReEm i i D
3dS y2Im Em2w2(

i
Im Em i i D . ~A5!

The sum in Eq.~A5! can be converted to an integral an
evaluated in principle. For the ‘‘one-way’’ model describe
in the text the integral is particularly simple and we obta
m
,

nn
-

r-
r~x,y!5E
0

2p du

2p
dS x2S 11

w2

2 D cosu D
3dS y2S 12

w2

2 D sinu D . ~A6!

To this order inw, the circle has been turned into an ellips
Of course, we do not see any trace of the wings in pertur
tion theory.
ed,

ys.
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